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THE MOTION OF A HEAVY SYMMETRICAL BODY WITH FLEXIBLE RODS
ABOUT A FIXED POINT

V.G. VIL'KE

The motion of a symmetrical solid about its centre of mass is considered
in the case, when four mutually orthogonal flexible rods are fixed to it
in the equatorial plane of the body ellipsoid of inertia. The deformations
of rods is defined by the linear theory of the bending of thin viscoelastic
rods, and lead to the evolution of the motion of the solid, i.e. the solid
approaches steady rotation about the vertical. the approximate equations
in Andoyer variables that define the system evolution are obtained by the
method of averaging. The stability of the steady rotations obtained is

investigated.
b pmde e d T L s el wdem o Tae e mde D e e T =T 23 e Al P R TR [ R . BN = mae 3 Ll i & a2 1o
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rods attached to it was investigated in /1, 2/. It was shown in /3/ that the longitudinal
deformations of elastic rods fixed to aheavy symmetrical solid rotating about a fixed point
results in the body approaching a steady rotation about the vertical axis. In that paper an
approximate equation was also obtained, which defined the evolution of motion in terms of the
Andoyer variables by the method of averaging.

Let Ay = Bi sk €y, where (41, Bi, €1 are the principal central mements of inertia of the
solid about the point O (the centre of mass of the body), and let two paris of elastic rods
be positioned along the principal axes of the ellipsoid of inertia Oz; and Oz, . Using the
linear theory of the bending of thin rectilinear rods, we determine the radius vector of a
point of the rod in the system of coordinates Oziz,z, in the form

Ry ==se; + Uy ==5€; + U1z (s, t) @ -+ ty5(s, 1) &g
Rp==sey + s == sy (5, £} €1 + s€q + Ly (5, 1) €5
se=K=[—b,a}ll]{a, b

The kinetic energy and angular momentum of the system are defined by the relations

T =%(Jm, o) -+ “:‘ZS [(w x R)+RPpds

=l K

G=Jw+ Y {[Rix (@ xR+ R)pds

tei K

where @ (@, @5 ®;*) is the angular velocity of rotation of the body,J: is the inertia tensor
of the body, and p is the linear density of the rod material, which is assumed homogeneous.
The angular velocity and the inertia tensor are considered in the moving system of coordinates
Oz12,24.

The position of the moving coordinate system relative to the fixed system Ol (the
axis O, is vertical} is defined by Euler's angles. The generalized momenta and Routh's
functional are defined by the relations

*prikl.Matem.Mekhan.,48,2,233-237,1984
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po=0Gey, py=Gey, pp=Gey, G= Vol
R==pe -+ py¥’ + pe8" — T + II + E[u]

where @, ¥, 8 are the angles of natural rotation, precession, and nutation, respectively,
ep, 6y, 8 are the unit vectors along the axes of rotation corresponding to Euler's angles,

and II, E [u] are the potential energy functionals of the gravitational field and elastic
deformations. The Routh functional is numerically egual to

R=-t(I[u}e,0)— 5 { (Ri*+ Re)pds + T+ Efu)
K

where J [ul is the inertia tensor of the system consisting of the solid and deformed rods,
Note that

2
Julo=G—G,, Gu= SZ [R; x RJpds

K il

=5 (6 — G, T} (6 — o) — - { @+ mYpds + T+ Efu]
X

We will change from canonical variables pg, py, Ps, P, ¥, 0 to the Andoyer canonical vari-
ables I, I,, Iy, @1, @5, @3 , using a canonical transformation. We note first that the operator

J' [u] can be represented in the form
T u]=[Jo(E + Joy + T3 W)t =
[E— i — Tl s+ (R + P 4. T
E = diag {1, 1, 1}, J, = diag {4, 4, C}
a=4,+ (spas, C=C1+2§s"pds
b4

(1)

=), =0, i=1,23 J§‘z’=-—‘§s(un+un)pds
I =— Csugpds, j=1,2; JP=JP
K

L=, JP=72 J§?#S(uxzz+ulsz+uza‘)933
4

If= S (e12” + was® - uas®) pds
&

Jg’ = S (U,nz + !l«gxz) P ds, J{z’ =0, Jg) = — S uglu”pds
K K

J(z) = - S Uyaligap ds
K

We shall henceforth assume u; to be small and restrict (1) to terms that are linear
with respect to uy

T ul= It — TG
We will represent the angular momentum G in terms of the Andoyer variables in the form

G=(1/’J;’~—71’sincp,, V'I,‘-—-—Il’cos&phll)
and define the functionals Il and E [u] by the formulas

Hng S(ul—}-ug)eds
K
E 1 3 Ghugy \2
{“}-"‘~-'3—NS > (...._*.2..) ds

d. &= .\ 0s?
K dmml jaul,jokd

where ey, ¥,. 75} is the unit vector along the vertical axis in the system of coordinates
Ox,z,xz4, g is the acceleration due to gravity, and N is the rod bending rigidity, equal to the
product of the modulus of elasticity of the rod material and the moment of inertia of the
rod cross—section (the rod is assumed to be unformly rigid). The unit vector directional
cosines relative to the vertical are expressed in terms of the Andoyer variables in the form
/47 . .

V1 = a sin ¢, -+ b sin @, cos g, <~ ¢ cos @, sin @, (2)

Y2 = @ cos @y -+ b cos g, cos @, ~— ¢ sin @, sin @,

Y3 = d — e cos @,
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a___];@]s"szﬂ_[l‘z, szllgﬁ]/‘]ﬁz__!sﬁ

C=1;l'l/132“—[a2, d=11~’31?2

e=0V{IE—TH({IF 1)

The system equations of motion

I'=—V,R[l, ¢,u,u] (3)
¢ =V:R[I, ¢,u u]
d . 3 .
Wvu‘R[qu)iuv“]—vuR{I’@'uvu]::_Q“

contain in the last equation the small parameter & = N~!, The dissipative forces Q, corres-
pond to the linear model of internal viscous friction

Qu=—VuD[u}, Dlu]=—1n Z (-?fa“i%)zds’wo

K imwl, jem], jpei
If &=10 (the rods are not deformed), then
u=0, R, ¢,0,00 =¥4"1(I2 I + Y, 2
and the equations of motion take the form
I;=0,1=1,2,3, g = (4 — () A™CI, (4)
@y = A", ¢, =0
The solutions of (4) define the reqular precession of a symmetric solid in the Euler case.
The solution of the last of Egs.(3), when I =1, ¢ =@ (J)t+ ¢ (0) is obtained in the form of
the series my = euy 4 @+ ..., i=1, 2,j=1,2,3, j5 i, where the functions u;® sat-
isfy the eguation

sufd Pl )
g T X grga = Spew; —pegy;, i==1,2, j=1,2,3, ja&i {5

oy =AY TF—Tising, =AY T —IFcosq,
0y = CU, + g = 47124 — C) I,

If uea is a solution of (5}, then its particular solution, that defines the forced bend-
ing oscillations of rods, has the form

— a" £
w=;PW§% ®)

_ Henceforth, assuming %9, and 4@, to be small, we shall restrict the series (6) to
the first two terms, and obtain

uy® = —pe {{oe; — % (001 ¥ () + & (i — 19)) 4 ()} (7)

where when K = [—}, b] - s3se bt sign s
CWel=qp —— t 75

Ead bs¥sign s bigh
h@=g — 5+, =K
When determining the functions ¥, ¥,, the kinematic boundary conditions
a3
u§3(0vt)= B9 ug& (0- t)&o
{the conditions of attachement at the origin of coordinates) and the dynamic boundary condi-

tions P P
5wl (£ b ) =g ulo (L0, =0

(no external forces at the rod free ends) were taken into account. Note that the dynamic
boundary conditions are contained in the last equation of system (3).
For variables I, I,, I; Egs.(3) have the form

1,~=_(J~x[u]%g-;,e—-(}u)—IS‘pg(un%}-f—uu%)ds (8)

I =— SPS’ t.uu'g‘:;f“f' un%—f-@w*f—“n)%]d& I'=0
k
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To determine the evolution of the action variables it is necessary to substitute solutions
{7), restricted to terms of the order of &, into Egs.(B), and average over the angle vari-
ables ¢, §, /5/. We then have

e (A MT T2 T2\ (1.2 .9724319d_{’\f“1f.2\¢
11-— 42 jaiiE Ay 432 S Wil O 231777

kol g2 1% — Yokaly (T2 — IR [A (L2 + 1) + C (I — IO It
I = — by (I — I I PlC (T2 — I 2) + AL2), Iy =0
by = prexASC1 (s (5)ds >0, ko= pPexg? 471072 (W (5)ds >0
K X

P
D
St

Tl
i1

From the third of Egs.{9) it follows that the projection of the angular momentum vector
of the system on the vertical J; remains constant, and from the second that the angular momentum
of the system I, approaches [, i.e. the body approaches steady rotation about the vertical.
Let us determine the limit values of [,. Equating to zero the right side of the first
of Egs.(9) and assuming that I, = I, we obtain the equation

@—-0nL I Ik~ 1+ 24 — ) CIP) + kI, =0

which shows that Iy = 0,], = I, are the steady values. The frst of them is steady when A>C
and unsteady when 4 < C, and, conversely, the second is stable when 4 <€ and unstable when
4>C.

To follow the evolution of the angular momentum vector, we will obtain an eguation describ-
ing the variation of the angle ¢z We have

P3 "'pgS [uu 3y -+ Ugy = a! (1143-}*«1&33) a0, ]ds (10)
Taking (2) and (7) into account, after averaging the right side of (10), we obtain
oy = Lol (10— 310), ko =apighe {4a () ds >0 (1)
K

The angle @, (f) is cbtained by simple integration, after integrating Egs.(9).

It follows from (11) that the end of vector G describes in the fixed horizontal plane a
helix-like curve, Since a change in the direction of rotation is possible during the motion,
the guantity 1,2 — 31, may change its sign.

Let us determine the position of the fixed axes of rotation in the equatorial plane of
the ellipsoid of inertia, when 4 >C and I, approaches zerc. For small I, averaging over
the angle ¢, becomes inadmissible. Averaging the first of Egs.(8) only over the angle g, and
assuming that I, = I,, we cbtain the equation

AC (A — Oy g,” = kJ A sin do, — kyJ e, cos® 2¢, (12
"4"“"“1‘9’5‘4"§8‘P1 ()ds>0, ks=1ped™ s (9)ds>0
K

which is accurate to terms linear respect to @, ¢ .
The equilibrium positions given by (12) are

= {mam}, ¢ =Pla+mm}, m=0,x4,...

The first series of solutions corresponding to unstable steady rotations about the Oz,
and Oz, axes, while the second represents stable steady rotations about axes rotated by an
angle m/4 relative to the first. When rotating about the axes O, Oz,, the rods are straight,
and when rotating around axes turned relative to Oz, Oz, by an angle n/4 they are bent by
the action of centrifugal inertia forces in the system of coordinates Oz7,z,. The nature of
the stability of the positions of eguilibrium of the rods that have only longitudinal deforma-
tions was directly opposite /3/.

Note that the conclusions on the stability of steady rotations were cbtained on the
basis of Eg.(1l2) by the method of motion separation and averaging. It would be desirable to
check them by investigating the properties of stationary points of variation of the potential
energy /6/.
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ON THE CONTROLLED ROTATION OF A SYSTEM OF TWO RIGID BODIES
WITH ELASTIC ELEMENTS

V.E. BERBYUK

The problem of controlling the plane rotational motions of two rigid bodies
connected by an elastic rod is studied. One end of the rod is attached to
the support by a hinge with a spring, the latter modelling the elastic
compliance of the fastening, and the other end is rigidly joined to the load.
The Hamilton principle is used to obtain the integrodifferential equations
and boundary conditions describing the motion of the system support - spring -
rod - load. The following problem is posed: it is required to rotate the
system by a given angle by means of the controlling force moment, with
quenching of the relative oscillations of the load elements which appear

as a result of the deformability of the rod and of the elastic torsion of
the spring. Similar problem arise in the study of the dynamics and control
of the motion of devices used in transporting loads through space (robots,
manipulators, load lifting machines, etc.). In computing their control
modes a significant part is played not only by the deformability of the
elements /l~3/, but also by the elastic compliance of the connecting

joints /4/. Asymptotic methods are used to botain a solution of the

control problem in question for two limiting cases: 1) the mass of the

load carried is much greater than the mass of the rod and support, and 2)
the rod has high flexural rigidity. The results obtained represent a
development and generalization of the results obtained in /5/. The

problems of the dynamics and contrcl of oscillating systems with distributed
parameters were investigated using various types of formulation in a number
of papers (/5~13/et. al.).

1. Description of the model and the equations of motion. wWe consider a mechan-
ical system consisting of two rigid bodies connected
by a rod of variable cross-section. The system can
execute rotational motions in some plane (Fig.l). One
end of the rod is attached to the support G,. by means
of a hinge with a weightless spring, modelling the
elastic compliance of the joint. The other end is
rigidly fixed to the load G, whose linear dimensions
are small compared with the length of the rod. The
0,Z, ~axis, perpendicular to the plane of the motion
represents the axis of rotation, with respect to which
the moment of control forces M (t) is applied. We
introduce the 0OXYZ coordinate system with origin
at the centre of the hinge (point 0), rotating in the
inertial O,X,Y,Z, space together with the spring and
rod. We direct the OX axis along the tangent to the
neutral line of the rod at the point O, and the 0Z
axis along the O,Z, axis of rotation. We assume that
the motion of the model is described in the framework
of the linear theory of thin rectilinear, inextensible

Fig.l
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